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Abstract. In Floudas and Visweswaran (1990), a new global optimization algorithm (GOP) was 
proposed for solving constrained nonconvex problems involving quadratic and polynomial functions in 
the objective function and/or constraints. In this paper, the application of this algorithm to the special 
case of polynomial functions of one variable is discussed. The special nature of polynomial functions 
enables considerable simplification of the GOP algorithm. The primal problem is shown to reduce to a 
simple function evaluation, while the relaxed dual problem is equivalent to the simultaneous solution 
of two linear equations in two variables. In addition, the one-to-one correspondence between the x 
and y variables in the problem enables the iterative improvement of the bounds used in the relaxed 
dual problem. The simplified approach is illustrated through a simple example that shows the 
significant improvement in the underestimating function obtained from the application of the modified 
algorithm. The application of the algorithm to several unconstrained and constrained polynomial 
function problems is demonstrated. 

Key words. Global optimization, polynomial functions, unconstrained and constrained optimization, 
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1. Introduction 

Polynomial functions of one variable occur frequently in mathematical program- 
ming problems. Problems involving the unconstrained or constrained optimization 
of these functions are interesting not only because of the inherent simplicity of the 
problem structure, but also because these functions form the backbone of larger 
optimization problems involving more variables. Often, the solution of these 
larger problems becomes much easier if a few of the variables are fixed. 
Consequently, they can be viewed as parametric problems in one variable. The 
solution of optimization problems involving one (or a few) variable(s) can often 
provide significant insight into the nature of larger problems. 

The unconstrained minimization of Lipschitz continuous functions (of which 
polynomial functions are a subset) has been studied extensively in the past two 
decades. Algorithms for solving this problem have been proposed by Evtushenko 
(1971), Piyavskii (1972), and Timonov (1977), among others. Shen and Zhu 
(1987) proposed an interval version of Schubert’s algorithm for univariate func- 
tions. Galperin (1987) also considered the incorporation of constraints in the 
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problem. Hansen (1979) proposed an algorithm for minimizing univariate func- 
tions using interval analysis. A comprehensive review of global optimization of 
univariate Lipschitz functions (including functions other than polynomials) is given 
in Hansen et al. (1991a). They provide the necessary conditions for finite 
convergence of algorithms addressing this problem and the characteristic that a 
best possible algorithm should have. An extensive comparison of the computation- 
al aspects of these algorithms as well as new improved algorithms are provided in 
Hansen et al. (1991b). Wingo (1985) proposed a method for locally approximating 
the polynomial function to enable the solution without evaluating derivatives. 
However, the algorithm fails to identify the global solution in some cases. D,ixon 
(1990) proposed several methods for accelerating the search procedure using 
interval methods to locate the global solution for functions of one variable. 

Floudas and Visweswaran (1990) and Visweswaran and Floudas (1990a) pro- 
posed a deterministic approach for global optimization of problems involving 
quadratic and polynomial functions in the objective function and/or constraints. 
They made use of primal-dual decomposition to solve the originally nonconvex 
problem through a series of primal and relaxed dual subproblems. The algorithm 
(GOP) was shown to have finite convergence to an e-global minimum of the 
problem. The algorithm was applied to several classes of problems including 
polynomial function problems. Visweswaran and Floudas (1990b) presented new 
properties that exploit the structure of the Lagrange function and showed that 
they enhance the computational efficiency of the GOP algorithm when applied to 
problems with quadratic terms in the objective function and/or constraints. 

In this paper, the application of the GOP algorithm to the special case of 
polynomial functions in one variable is discussed. Use is made of the new 
properties presented in Visweswaran and Floudas (1990b) as well as the structure 
of polynomial functions to reduce the GOP algorithm to an extremely simple 
form of application. The modified algorithm is also shown to be applicable to 
constrained optimization problems with polynomial functions in one variable. The 
improvements over the original GOP algorithm are illustrated both computation- 
ally and geometrically through the use of a simple example. In addition, several 
examples of unconstrained and constrained problems help to highlight the effec- 
tiveness of the proposed algorithm. 

2. Problem Statement 

In this paper, the application of the GOP algorithm to optimization problems 
involving polynomial functions of one variable in the objective function and/or 
constraints is presented. These problems have the following form: 

minF(y)=a,+a,y+a,y2+~~~+a,yN 

Aj, + Ajly + A,,y’ + . . . + AjNyN G 0 Vj = 1,2, . . . , J (1) 
B,,+B,,y+B,zy’+..-+B,,yN=O Vm=1,2,...,M yL~ysy”, 
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where y is a single variable and Aji, A,, are the coefficients of y’ in the jth 
inequality and mth equality constraint respectively. The nonconvexities in this 
problem arise due to the existence of polynomial terms in either the objective 
function or the set of constraints. It is assumed that the polynomials have 
nonconvex terms right up to the Nth degree term. 

Consider the following transformations: 

x0 = 1 

Xl =Y 
x2 = Y2 = (X,)Y 
x3 = Y3 = (X2)Y 

XN = j” = &&y . 

Then, the problem can be written in the following equivalent form: 

y,$g ‘ixi 

go Ajixi ~0 j=1,2,...,J 

i BmiXi = 0 m=l,2,...,M 

xi-xiply=O i=1,2,...,N 

where x0 = 1. 

(2) 

The case of unconstrained optimization problems is considered in the following 
section. The theoretical development is extended to the case of constrained 
problems in Section 7. 

3. Unconstrained Problems 

For the case of unconstrained optimization, problem (2) can be simplified to the 
following form: 

y,$g ‘ixi 

~~-x,~~y=O i-1,2 ,..., N, (3) 

where x0 = 1. For a fixed y = yK, the primal problem can be written as 

m;ln g aixj 

s.t. xi-xi+yK=O i-l,2 ,..., N, 

with x,, = 1. 

(4) 
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Note that for any fixed value of y = yk, all the x variables are uniquely 
determined. Therefore, this problem is simply one of function evaluation, with 
the solution being as follows: 

x0 = 1 
xl=yK 

x2 = (YKY 
x3 = (Y”)” 

. . 

. . 

xi= (j”)” 

F(YK) = $. Ui(YKY 

The KKT gradient conditions for the primal problem (4), for a fixed y = yK, can 
be written as: 

v&x, y”, v”) = q + vf - z&yK = 0 vi = 1,2, . . . , N ) 

where VT are the Lagrange multipliers for the new equality constraints introduced, 
with v:+~ = 0. Here, the Lagrange multipliers can be found by backward substi- 
tution: 

K 
VN= -UN 

K KK 
‘N-1 = ‘NY -‘N-l = -‘N(YK) - ‘N(YK) - uN-l 

K K K 
‘N-2 = viV-lY - ‘N-2 =-aN(yK)2-aNml(yK)-aN-2 

K KK K 
Vl = v2y -a, = -aN(yKjN-’ - aN-,(yK)N-2.. . -u2( y”) - a, . 

The Lagrange function formulated from the primal problem (4) can be written 
as 

qx, y, v”) = 5 uixi + 2 vf(q - qly) + l&x0 - 1) . 
i=O i=l 

Separating the terms in x, this can be rewritten as 

L(x, y, v”) = jjo [aj + VT - vLly]xi - vf . 

Using the KKT gradient conditions, the Lagrange function becomes 

qx, y, v”) = L$o ViK+l(YK - Y1-q - v,“. 

Thus, the q~ulifying constraint for each xi is of the form 

yK-yB0, or yK-y<O, 

(5) 
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depending on whether v:+, is greater than or less than zero respectively. 
Therefore, two relaxed dual problems are solved at every iteration. These two 
problems are separately considered below. 

FIRST RELAXED DUAL PROBLEM 

Consider the relaxed dual problem solved for the region yK - y 3 0. Before 
solving the relaxed dual problems, the Lagrange functions from previous itera- 
tions are selected. From the kth iteration (k = 1,2, . . . , K - l), the two Lagrange 
functions have qualifying constraints of the form yk - y 3 0 and yk - y G 0. These 
Lagrange functions are selected on the basis of satisfaction of their qualifying 
constraints at y = yK. Since yk - yK must be either positive or negative, exactly 
one Lagrange function from every iteration will be present for the current relaxed 
dual problems. 

Now, the previous iterations correspond to fixed values of y = yi, y2, . . . , yK-i. 
Some of these fixed values of y will be less than yK. Suppose that 

YL =j=ly”“Kp, {Y’: Y’<YKl. 1 1 

Then, the Lagrange function formulated from the Lth iteration (for which the 
fixed value of y is y”) has the qualifying constraint yL - y 6 0. Therefore, for the 
current relaxed dual problem, the lower bound on the y variable is yL. At the 
same time, the qualifying constraint from the current iteration ensures that the 
upper bound on y is yK. Thus, for the current relaxed dual problem, yL. < y G yK. 

Now, the x variables are related to y through the equivalence relations 

x0 = 1 

Xl = Y 
x2 = Y2 = (-%)Y . . . . 

Therefore, the bounds on the x variables can be changed to suit the new bounds 
on y for the current relaxed dual problem. This is done in the following manner: 

x; = yL , xY=yK 

x; = MIN[( Y~)~, ( y”)“] , x; = MAX[( yL)‘, ( y”)‘] 

x’; = MIN[(yL13, (~“1’1 , x: = MAX[(Y’)~, (Y”)“] 

ii = MIN[( y”)“, ( y”)“] , 4; = MAX[( ;L)N, ( y”)“] 

IfyL<OandyK>O, thenxfi=xf;=x:...=O. 
The reason for the use of these expressions is as follows. If yL. 3 0, then the 

lower and upper bounds on xi, x2, . . . , xN are simply given by 
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xL = (yL, (y”)‘, . . . , (Y~)~), and 

x” = <yr (Y”)‘, . . . , (y”)“) . 

However, if yL <O and yK > 0, then the value of y can be either positive or 
negative. Therefore, any even power of y can be as low as zero. Hence, 

L L 
x2 =x4 . . . = 0. Furthermore, 1 yL 1 can be either greater than or less than 1 yK 1. 
Therefore, for each of the powers of y, the minimum and maximum values are 
given by the minimum and maximum values of the corresponding terms in both yL 
and y”. 

These new bounds for the x variables are then used in the Lagrange functions in 
the following form: 

If vi+lso, then xy = xt . 

If vj+l<o) then xy = xy . 

It should be noted here that due to the nature of the transformation variables that 
are introduced into the problem, the Lagrange function is linear in x for every 
fixed y. Therefore, there is no need to linearize the Lagrange function with respect 
to x (Visweswaran and Floudas, 1990b). 

Now, there are (K - 1) Lagrange functions from previous iterations that can be 
used for the current relaxed dual problem. However, it is sufficient to consider 
only one of these Lagrange functions, since the omission of the remaining 
constraints does not destroy the validity of the relaxed dual problem as a lower 
bound on the global solution. The obvious choice for this is to use the Lagrange 
function corresponding to the nearest point on the left side, that is, the Lagrange 
function corresponding to yL and ignoring all other Lagrange functions from 
previous iterations. The current relaxed dual problem then has the following 
form: 

s.t. /LB ?= L(XBL, Y> v”> 
YSYL 

PB 2 L(xBK, y, v”) 

YSYK 

where B, and B, are two combinations of bounds of the x variables that are being 
used in the Lagrange functions from the Lth and Kth iterations, respectively. 

Again, due to the nature of the transformations, the two constraints are linear 
in y. Therefore, it is clear that the solution to this problem will be either at the 
intersection of the two constraints, or at one of the two bounds for y, namely, yL 
or yK. Consider the three cases. 

(i) The solution of the current relaxed dual problem lies at yL. In this case, the 
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value of the first Lagrange function (that is, the one formulated from y”) 
must equal the value of the objective function at yL. This arises as a result of 
the strong duality theorem. This means that due to the presence of the first 
constraint, the value of pLB must equal the value of the objective function at 
yL. Therefore, it is not necessary to consider this solution. 

(ii) The solution of the current relaxed dual problem lies at y”. In this case, the 
value of the second Lagrange function (that is, the one formulated from y”) 
must equal the value of the objective function at yK. This arises as a result of 
the strong duality theorem. This means that due to the presence of the 
second constraint, the value of pLg must equal the value of the objective 
function at y”. Therefore, again it is not necessary to consider this solution. 

(iii) The solution of the current relaxed dual problem lies at the intersection of 
the two constraints. In this case, the solution cannot be omitted. 

Thus, the relaxed dual problem can be solved easily by considering only the third 
possibility and solving for the intersection of the two constraints in the problem. 
This is very easy to do since the constraints are linear in y. 

SECOND RELAXED DUAL PROBLEM 

For the case when yK - y d 0, the nearest point to the right side of yK becomes 
the upper bound for y, while the value of yK becomes the lower bound for y. That 
is, for this case, yK c y s yR, where now yR is found as 

yR=, min ,=1 ,,_,, K-l {Y’: Y’>YKl. 

Similarly, the bounds for the x variables can be found as follows: 

x’; = yK ) xY=yR 
xi = MIN[( yK)‘, ( y”)‘] , x; = MAX[( y”)“, ( y”)“] 

x’; = MIN[(yK13, (y”>“l > xy =MAX[(Y~)~, (~“1’1 

i; = MIN[( &v, ( y”)“] , ;,” = MAX[( J+)~, ( y”)“] . 

IfyK<O,thenx~=x~=x~...=O. 
In this case, the relaxed dual problem is solved by considering the current 

Lagrange function, that is, the Lagrange function formulated from the current 
iteration corresponding to yK - y c 0, and the Lagrange function from the Rth 
iteration corresponding to yR - y 2 0. Again, the relaxed dual problem can be 
solved simply by considering the intersection of the two Lagrange functions and 
comparing the corresponding value of pELB to the values of the objective function at 
yK and yR. 
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4. The Improved GOP Algorithm 

The modified algorithm for minimizing unconstrained polynomial functions in one 
variable can be stated in the following steps: 

STEP 0. Initialization of Parameters. 
Define the storage parameters psjt“” (Km”“), psjfor2 (Km”“), ystorl (Km”“), ystor2 

(Km”“), and yk (Km”) over the maximum expected number of iterations Km”“. 
Define PUBD and RLBD as the upper and lower bounds obtained from the primal 
and relaxed dual problems respectively. Also define the parameters yLEFT and 
Y RrGHT and initialize them to the original lower and upper bounds yL, y” on y. Set 

p;Orl(KmaX) = u, gp’(pax) = u 

P UBD 
=U, and RLBD = L . 

where U is a very large positive number and L is a very large negative number. 
Define the logical variables LRD and RRD (for the left and right relaxed dual 
problems, respectively). Select a starting point y’ for the algorithm. Set the 
counter K equal to 1. Select a convergence tolerance parameter E. 

STEP 1. Primal Problem. 
Store the value of y”. Calculate the solution of the problem as follows: 

x0 = 1 
xl=yK 

x2 = (Y”)” 
x3 = (Y”)” 

i, = ( jK)” 

F(yK) = I$ ai(YKY. 

Also find the Lagrange multipliers for the problem as follows: 

K 
uN= -aN 

K KK 
vNvl = vNy - aN-l = -aN( y”) - uN-l 

K K K 
vN-2 = vN-ly - UN-2 = -aN(f)2 - aN-l(yK) - aN-2 

K KK K 
Vl = v2y -a, = -aN(yK)N-’ - aN-,(yK)N-2.. . -a,(yK) - a, . 

Store the Lagrange multipliers v”. Update the upper bound so that 

P UBD = MIN(PUBD, F( y”)) . 
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STEP 2. Determination of Nearest Points from the Previous Values of y. 
set yLEFT = yL, yR’GHT = yU. Set LRD = YES, RRD = YES. If yK = yL, then set 

LRD = NO. If yK = y”, then set RRD = NO. 
(a) If K = 1, then set yLEFT = yL, yRiGHT = y’. Go to Step 3. 
(b) If K = 2, then yK is either the lower bound yL or the upper bound y”. 

(i) If y2 = yL, then set yLEFT = yL, yRiGHT = y’. Go to Step 3. 
(ii) If y2 = y’, then set yLEFT = y’, yRrGHT = y’. Set Go to Step 3. 

(c) If K > 2, then do the following steps for k = 1,2, . . . , K - 1. 
(i) If yk < yK, then set yLEFT = MAX( y”, yLEFT), L = k 
(ii) If yk > yK, then set yRIGHT = MIN( yk, yRIGHT), U = k 

STEP 3. First Relaxed Dual Problem (i.e., for yK - y 3 0). 
Updating bounds on x. 

Reset the bounds on the x variables as follows: 

x; = yLEFT ) xY=yK 
$ = ( yLEFT)2 ) x; z (yK)2 
x; = ( yLEFT)3 ) xy = ( yfy 

& = (y;.EFT)” ) ;; = (y”)” . 

Formulating the Lagrange functions. 
(i) For the Lagrange function from the Lth iteration (i.e., the Lagrange function 

from the Lth constraint with the quazifying constraint yL - y s 0): 

If of;, 20, then xp =xy 
If vf+i<O, then x? =xt 1 Vi=l,2,. . . ,N-1. 

(ii) For the Lagrange function from the Kth iteration (i.e., the Lagrange function 
from the current iteration with the qualifying constraint yK - y 2 0): 

If v,!+, 2 0 , then xsK = xt 
If v,“+, ~0, then xBK =xy 

Vi=1,2,...,N-3 

Solving the Relaxed dual problem. 
Find the intersection of the following two constraints: 

~~ = L(xBL, y, vL), and 

/.LB = L(xB,, y, v”) . 

If j.LB < PUBD, then store the solution of the problem. That is, set 

&Or’(K) = pEt, and y"'"'](K) = yint , 

where int denotes the value of the variable obtained by the intersection. 
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STEP 4. Second Relaxed Dual Problem (i.e., for yK - y G 0). 
Updating bounds on x. 

Reset the bounds on the x variables as follows: 

x:.=yK, x: = Y R1GHT 
x; z ( yK)2 ) xy = ( yRIGHT)2 

& = ( yK)3 ) xy = ( y RIGHT)' 

& = ( ;y ) ;; = (?;RI+N . 

Formulating the Lagrange functions. 
(i) For the Lagrange function from the Uth iteration: 

If vi”+, 30, then x;~=x~. 
If vi”,, <O, then xfU= xy . 

vi=1,2 )..,) N-l. 

(ii) For the Lagrange function from the Kth iteration: 

If vf(+iaO, then x?=x:. 
If vi”+, <O, then xlFK = X: . ‘ifi=1,2 ,..., N-l. 

Solving the Relaxed dual problem. 
Find the intersection of the following two constraints: 

puB = L(xBu, y, vu), and 

/.LB = L(xBK, y, V”) . 

If &k < PUBD, then store the solution of the problem. That is, set 

pSjtor2(K) = pi’, and ysfor2(K) = yint , 

where int denotes the value of the variable obtained by the intersection. 

STEP 5. Selecting a New Lywer Boun$ and yK+‘. 
From the stored sets pzor and pzor , select the minimum pzin (including the 

solutions from the current iteration). Also, select the corresponding stored value 
of y as y”‘“. Set RLBD = pfn, and yKel = y”‘“. Delete pEi” and ymin from the 
stored set. 

STEP 6. Check for Convergence. 
Check if RLBD > PUBD - E. IF yes, STOP. Else, set K = K + 1 and return to 

step 1. 

REMARK 1. Since the primal problem in Step 1 is solved for a fixed value of y, 
the problem is just a function evaluation at y = y”. 
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REMARK 2. Each of the two relaxed dual problems solved (in Steps 3 and 4) 
are solved by calculation of the intersection of two linear equality constraints in 
two variables and the comparison of the resulting solution for vB with the values 
of the objective function at the two relevant bounds of y. 

5. An Illustrating Example 

Consider the following unconstrained optimization problem: 

m;‘n -y3 + 4.5y2- 6y 

s.t. ocys3. 

Thus, a, = 0, a, = -6, a2 = 4.5, and a3 = -1. The nonconvexity in this problem 
arises due to the presence of the term -y3 in the objective function. 

Introduction of three transformation variables x1, xZ and xg and their equiva- 
lence relationships to y results in the following equivalent form of the problem: 

min -6x, + 4.5x - x3 

s.t. x1 - y = 0 

x2 - xly = 0 

x3 - x2y = 0 
Oays3 

osx,s3 

osx,<9 

0~~~~27. 

Consider a starting point of y’ = 1 for the GOP algorithm. The solution of the 
primal problem can be found as follows: 

x0 = 1 
xl=(yl) =l 
x*=(y’y =l 
x3= (y’)” = 1 

F(y’) = i ai(yy = -2.5 
i=o 

vi = -a3 = 1 
2~: = vtyl - a2 = -3.5 

v:=vb’-a, = 2.5 

Since K = 1, and y1 = 1, set yLEFT = yL = 0 and yRrGHT = y” = 3. Also, set 
LRD = YES and RRD = YES. 
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The Lagrange function for the problem is formulated as 

,5(x, y, v’) = -6x, + 4.5x, - x3 + 2.5(x, - y) - 3.5(x, - x,y) 

+ 1(x3 - X,Y) 

= -3.5x,(1 - y) + x,(1 - y) - 2.5~ . 

First Relaxed Dual Problem (Solved for 1 - y 2 0). 
According to Step 3 of the modified algorithm, set: 

4 = YLEFT =(), xy=yl El 
x; = ( yLEFT)2 = 0 ) $ = ( yl)* = 1 
xf = (yLEFT)3 = 0 ) xy = ( y1)3= 1 . 

The proper bounds to be used for the x variables in the Lagrange function are 
then determined as follows: 

Since v:<O, x+=x~=l. 

Since v:>O, xfl=xi=O. 

Using these bounds for the x variables, the current Lagrange function becomes 

L(x, y, v’) = -3.5(1- y) - 2.5~ = y - 3.5 . 

Since this is the first iteration, there are no previous Lagrange functions. 
Therefore, the solution to this problem will lie at y = 0, since the coefficient of y 
in the Lagrange function is positive. The objective value, that is, the value of pu,, 
is -3.5. 

Second Relaxed Dual Problem (Solved for 1 - y s 0) 
Set 

x;=y’ = 1) +yR’GHT = 1) 

x$ = (y1)2 = 1 ) xy zz (yRIGHT)" = 9 ) 
x; = ( y1)3 = 1 , x; = ( yR’GHT)3 = 27, 

The proper bounds to be used for the x variables in the Lagrange function are 
then determined as follows: 

Since vi<O, xfl=xt=l. 

Since v:>O, x$=xy=9. 

Using these bounds for the x variables, the current Lagrange function becomes 

L(x, y, v’) = -3.5(1 - y) + 9(1 - y) - 2.5~ = -8y + 5.5. 

The solution can be found by inspection. In this case, since the coefficient of y is 
negative, the solution lies at the upper bound, that is, y = 3, pB = -18.5. 
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Thus, at the end of the first iteration, the lower bound from the two relaxed 
dual problems is -18.5. The value of y for the next iteration is 3. 

It is interesting to compare the two solutions found in the first iteration to the 
solutions that would be found using the original bounds for the x variables. If the 
bounds for x1, x2 and xX were fixed to be [0,3], [0,9] and [0,27] (which are the 
original bounds for the x variables), then the solutions found are y = 0, pB = 
-10.5 and y = 3, pB = -25.5. Thus, using the improved bounds for x results in a 
tighter lower bound from the relaxed dual problems. 

According to Step 5, the next y is selected as the one that corresponds to the 
minimum of the two relaxed dual problems, that is, y2 = 3. 

SECOND ITERATION 

The primal problem is solved for y2 = 3. The solution to this problem is: 

x0= 1 
x1=(y2) =3 
x2=(yq2 =9 

13 = (Y”)’ = 27 

F( y”) = 2 Ui( y’)’ = -4.5 
i=o 

2~: = -a3 z 1 
vi = vz y2 - a2 = -1.5 
vt = vi y2 - a, = 1.5 

Since K = 2, and y1 = 1, set yLEFT = y1 = 1 and yRIGHT = yU = 3. Also, since 
y2 = yU, set LRD = YES and RRD = NO. 

The Lagrange function for the problem is formulated as 

L(x, y, v”) = -6x, + 4.5x2 - x3 + 1.5(x, - y) - 1.5(X, - x,y) 

+ 1(x, - X2Y) 

= -1.5x,(3 - y) + x2(3 - y) - 1.5y . 

Since RRD = NO, only the relaxed dual problem for y G 3 needs to be solved. 

Relaxed Dual Problem (Solved for 3 - y 2 0). 
Set 

xr;zyLEFT El, xyzyl =3, 
x$ zz (yLEFT)’ = 1, x; = (y’)2=9) 

x’; = cyLEFTj3 = 1 , xy = ( y1)3 = 27 . 

The proper bounds to be used for the x variables in the Lagrange function from 
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the current iteration are then determined as follows: 

Since v;<o, xp=xy=3. 

Since v:>O, .+=x:=1. 

Using these bounds for the x variables, the current Lagrange function becomes 

qx, y, v”) = -4.5(3 - y) + l(3 - y) - 1sy = 2y - 10.5 

For the previous iteration, the Lagrange function has the following bounds for X: 

Since ~,2>0, ,$=x:=9. 

Since vz<O, ,+=x~=l. 

From this, the Lagrange function from the first iteration becomes 

qx, y, v’) = -3.5(1- y) + 9(1 - y) - 2.5y = -8y + 5.5 . 

The solution to the current relaxed dual problem lies at the intersection of the two 
Lagrange functions, or at one of the two bounds for y in the current problem, that 
is, at either y = 1 or y = 3. If the solution lies at either of these two bounds, then 
it need not be considered. Therefore, the only case to be considered is when the 
solution lies at the intersection of the Lagrange functions. Here, the intersection 
lies at y = 1.6, puB = -7.3. This is less than the objective function values at y = 1 
or y = 3, so this is the solution of the current relaxed dual problem. Therefore, 
R LBD = -7.3 and y3 = 1.6. 

THIRD ITERATION 

The primal problem is solved for y3 = 1.6. The solution to this problem is: 

x0 = 1 

Xl = (Y’> = 1.6 

x2 = (Y”)’ = 2.56 

x3 = ( Y313 = 4.096 

F( y’) = 5 a,( y3)i = -2.176 
i=O 

3- v3 - -a3 = 1 
3 3 3 

v2 = v3y - a2 = -2.9 
vi= us’-a, = 1.36 

Since y1 = 1 < y3, and y2 = 3 > y3, set yLEFT = y1 = 1 and yRrGHT = y2 = 3. Also, 
set LRD = YES and RRD = YES. 

The Lagrange function for the problem is formulated as 
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L(x, y, v’) = -6x, +4.5x, - x3 + 1.36(x, - y) -2.9(x, - xly) 

+ lb3 - %Y) 

= -2.9x,(1.6-y) + x,(1.6-y) - 1.36~ . 

First Relaxed Dual Problem (Solved for 1.6 - y 3 0). 
Set 

xt = yLEFT = 1) + y3 =1.6, 

~L;=(y~~~~)~=l, ~;=(y~)~=2.56, 
x’; = ( yLEFT)3 = 1 , x; = ( y3)3 = 4.096 . 

The proper bounds to be used for the x variables in the Lagrange function are 
then determined as follows: 

Since v3,>0, xF=xk=l. 

Since vi < 0 , xp = xy = 1.6 

Using these bounds for the x variables, the current Lagrange function becomes 

L(x, y, v’) = 2.28~ - 5.824. 

Since yr = 1 < y3 and the current relaxed dual problem is being solved for y < 1.6, 
the Lagrange function from the first iteration for y > 1 will be present. With the 
above bounds for x1 and x2, this Lagrange function becomes 

L(x, y, I?) = -3.5(1- y) + 2.56(1 - y) - 2.5~ = -1.56~ - 0.94. 

The intersection of the two Lagrange functions lies at y = 1.2718 and pB = 
-2.924. Since the value of wB is greater than the best upper bound from the 
primal problems (-4.5), this solution need not be considered for future iterations. 

Second Relaxed Dual Problem (Solved for 1.6 - y c 0). 
Set 

xt = y3 = 1.6, xy = yRIGHT ET 3 ) 

x$ = ( y3)2 = 2.56 , x; = ( yR’G”=)* = 9 ) 

xi = ( y3)3 = 4.096 , x; = ( yR’GHT)3 = 27 , 

The proper bounds to be used for the x variables in the Lagrange function are 
then determined as follows: 

Since v;<O, $=x:.=1.6. 

Since Y:>O, $=x:=9. 

Using these bounds for the x variables, the current Lagrange function becomes 

L(x, y, IJ’) = 6.976 - 5.72~ . 
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Since yz = 3 > y3 and the current relaxed dual problem is being solved for y 3 1.6, 
the Lagrange function from the first iteration for y c 3 will be present. With the 
above bounds for x1 and x2, this Lagrange function becomes 

L(x, y, v”) = -4.5(3 - y) + 2.56(3 - y) - 1.5~ = -0.44~ - 5.82. 

The solution to this relaxed dual problem lies at the intersection of the two 
Lagrange functions, which occurs at y = 2.0772 and pB = -4.9059. 

At the fourth iteration, the primal problem has a solution of -2.009. When the 
two relaxed dual problems are solved, they both have solutions greater than -4.5. 
Therefore, the algorithm converges at the end of the fourth iteration. In 
comparison to this, the original GOP algorithm takes 17 iterations to converge to 
the global solution. 

6. Geometrical Interpretation 

The application of the modified GOP algorithm to the example in the previous 
section can also be illustrated geometrically. Figure l(a) shows the plot of the 
objective function F(y) as a function of y. Since the problem is one of uncon- 
strained minimization, is also the plot of the solutions of the primal problem as a 
function of y. 

For a starting point of y’ = 1, the sequence of points generated by the algorithm 
is graphically illustrated in Figures l(b)-(e). For the first iteration (Figure l(b)), 
with an optimal value of -2.5 for the primal problem, the relaxed dual problems 
are solved for y 6 1 and for y 3 1. For the relaxed dual problem corresponding to 
y < 1, the bounds for x1 and x2 (which originally were [0,3] and [0,9] respective- 
ly) can be improved to [0, l] and [0, l] respectively. L: is the Lagrange function 
that results from using the improved bounds for the x variables, while Pi is the 
Lagrange function obtained from using the original bounds for x1 and x2. Thus, 
the use of the improved bounds results in a tighter underestimator for the relaxed 
dual problem. Similarly, for the relaxed dual problem corresponding to y 3 1, the 
bounds for x1 and x2 can be improved to [l, 31 and [l, 91 (instead of [0,3] and 
[0,9]). This results in a tighter Lagrange function (L:) when the modified bounds 
are used as compared to the Lagrange function (Pi) that results from the use of 
the original bounds. 

For the second iteration, y2 = 3 for the primal problem, and the optimal 
solution is -4.5. For this iteration, only one relaxed dual problem needs to be 
solved, namely for y c 3. For this problem, the Lagrange function from the first 
iteration corresponding to y 2 1 is present. Therefore, the bounds on x1 and x2 
can be modified to [l, 31 and [l, 91 respectively. The Lagrange function that 
results from the use of the tighter bounds on the x variables, namely L:, is a 
tighter underestimator of the objective function than the Lagrange function Z’f 
obtained from using the original bounds for x1 and x2. The solution of this relaxed 
dual problem is shown by point B on Figure l(c). In contrast, the solution 
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-6 - 

-8 - 

-10 I , I I I 
0 0.5 1 1.5 2 2.5 3 

Y 

Fig. l(a). Objective function. 

0 0.5 1 1.5 2 2.5 3 
Y 

Fig. I(b). Iteration 1 of the modified GOP algorithm. 

0 0.5 1 1.5 2 2.5 3 
Y 

Fig. l(c). Iteration 2 of the modified GOP algorithm. 
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0 0.5 1 1.5 2 2.5 3 
Y 

Fig. I(d). Iteration 3 of the modified GOP algorithm. 

-6 - 

-8 - 

-10 - I I I I I 

0 0.5 1 1.5 2 2.5 3 
Y 

Fig. l(e). Underestimating function after 3 iterations. 

-8 - 

-10 1 1 I I I 

0 0.5 1 1.5 2 2.5 3 
Y 

Fig. l(f). Underestimating function after 3 iterations of the original GOP algorithm. 
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obtained by the original GOP algorithm at a similar juncture is shown by point A. 
As can be seen, the lower bound obtained from the modified algorithm is tighter 
than the lower bound from the original GOP algorithm. It should be noted that 
the original GOP algorithm and the modified GOP algorithm differ in the 
subsequent selections of y for the third and further iterations. 

Figure l(d) shows the relaxed dual problems solved at the third iteration, for 
which the corresponding primal problem has been solved for y = 1.6. For this 
iteration, the nearest points from previous iterations on the left and right sides are 
y=l and y=3. C onsider the relaxed dual problem solved for y 6 1.6. The 
bounds on x1 and x2 can be improved to [l, 1.61 and [l, 2.561 respectively. This 
results in the Lagrange function Ly formulated from the current iteration. It is 
interesting to note that due to the improvement of the bounds on the x variables 
results in an even tighter form of the Lagrange function from the first iteration. 
Originally, at the second relaxed dual problem in the first iteration, this Lagrange 
function had been formulated using the bounds of [l, 31 and [l, 91 for x1 and x2 
respectively, and is represented by L: in Figure l(d). Now, however, the bounds 
on x1 and x2 are [l, 1.61 and [l, 2.561 respectively. Using these bounds results in 
the Lagrange function Mi from the first iteration. Therefore, the solution of the 
current relaxed dual problem lies at the point C. Similarly, for the relaxed dual 
problem solved for y 2 1.6, the bounds on x1 and xZ can be improved to [1.6,3] 
and [2.56,9] respectively. This results in the Lagrange function Lg from the 
current iteration. At the same time, the Lagrange function from the second 
iteration moves up from L: to MT due to the use of the tighter bounds on the x 
variables. The solution of this relaxed dual problem is shown by the point D on 
Figure l(d). 

Figure l(e) shows the underestimating function that is obtained after three 
iterations of the modified GOP algorithm. Figure l(f) shows the underestimating 
function obtained after three iterations of the original GOP algorithm when 
applied to this problem from a starting point of y1 = 1. As can be seen, the 
modified algorithm provides a tighter underestimator as compared to the one that 
is obtained by the original algorithm. Moreover, the modified algorithm elimi- 
nates whole regions of the problem for future iterations due to the tightness of the 
underestimator. 

At the fourth iteration, the Lagrange functions from the second and third 
iteration move up so that the solution of the relaxed dual problems is -4.5, and 
the algorithm terminates. 

7. Constrained Problems 

When the optimization problems involve constraints with polynomial functions in 
the objcctivc function and/or constraints, the primal problem can no longer be 
solved by function evaluation. In this case, the primal problem, for a fixed y = yK, 
can be written as 
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N 

m;ln c qx; 
i=O 

g Ajixi =s 0 j = 1,2, . . . , .7 

5 Bmixi = 0 m = 1,2, . . . , M 
i=o 

xi - Xi-lyK =o i=1,2 ,...) N, 

where x0 = 1. 
The solution of this problem is obtained by solving a linear programming 

problem in the x variables, and provides the multipliers used in formulating the 
Lagrange function as well as an upper bound on the global solution. 

The KKT gradient conditions for this problem are 

V&(x, y”, AK, /AK, v”) = a, + i ,uu.lj(Aji + 2 h,KB,, 
j=l m=l 

+ VT- V;+lyK=O, 

where AK and pK correspond to the original equality and inequality constraints, 
and vK corresponds to the new equality constraints introduced, with vi+, = 0. 

The Lagrange function for this problem is given by 

M 

+ 2 h,KBmjxi f v:(xi - xi-,y) + I&, - 1) . 
m=l > 

Separating the terms in x, this can also be written as 

L(x, y, AK, ,uK, v”) = 2 [ui + i A,,/.$ 
i=O j=l 

M 

+ 2 B,,Af+ V;-J&Y xi- II,“. 
m=l 1 

Using the KKT conditions, the Lagrange function can be written as 

L(X, y, AK, /JK, V”) = $t vF+l( yK -y)xi - ‘0” ’ 
r=O 

Thus, it can be seen that the Lagrange function formulated from the primal 
problem is identical to the one formulated in the case of unconstrained optimiza- 
tion problems. Therefore, Steps 2-6 of the improved GOP algorithm presented in 
Section 4 remain the same as for unconstrained optimization problems. 

It is possible that for some values of y = yK, the primal problem is infeasible. In 



POLYNOMIAL FUNCTIONS IN ONE VARIABLE 93 

this case, it is necessary to solve a relaxed primal problem involving the 
minimization of the sum of infeasibilities. This problem is shown below: 

mini aj+ 5 (P,+Y,) x j-1 m - 1 

N  

2 Ajixi G aj j = 1,2,. . . , J 
i=O 

in = 1,2,. . . , M 

xi - ximlyK = 0 i = 1,2, . . . , N . 

The Lagrange function for this problem is given by 

i=l 

Using the KKT gradient conditions for the relaxed primal problem and separating 
the terms in x, this again be reduces to 

N 

qx, y, AK, /P, v”) = c VfC+l(yK - Y)Xi - v:. 
i=O 

In this case, however, the Lagrange function is added to the relaxed dual problem 
in the following form: 

oa qx, y, AK, /AUK, v”) . 

This has the same form as the regular Lagrange function, except that pLB has been 
replaced by 0. Steps 2-6 can again be applied towards solving relaxed dual 
problems in these iterations, with the above replacement being the only change. 

8. Computational Experience 

8.1. UNCONSTRAINED PROBLEMS 

EXAMPLE 1. This example is taken from WingoT1985). 

52 
min y6 - - 

Y 
25 y5 + g y4 + ; y3 - g y2 - y + $ -2SySll. 

This function has a local minimum at 0, with a value of &. The best solution 
reported by Wingo (1985) is -23627.1758, occurring at y = 11. However, the 
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global minimum of the function occurs at y = 10, with an objective value of 
-29763.233. 

For this problem, 

M=J=O. 

When the (GOP) was applied to this problem, it converged to the global 
solution of -29763.233 taking around 175 iterations from different starting points. 
When the improved GOP algorithm was applied, however, the global optimum 
was identified from all starting points in less than 24 iterations. For a relative 
tolerance of 10-9 the algorithm takes 11 iterations, while the number of iterations 
required for relative error between the upper and lower bounds to be less than 
lo-’ is 23. After 26 iterations, the algorithm converges exactly (with an absolute 
error of 0) to the global solution. 

EXAMPLE 2. This example is taken from Moore (1979). It involves the 
minimization of a 50th degree polynomial in one variable. 

50 

m;ln 2 aiy’ l<y<2, 
i=l 

where 
a = (-500.00000000, 2.5000000000, 1.666666666, 1.250000000, 1.000000000, 

0.833333333, 0.714285714, 0.625000000, 0.555555555, 1.000000000, 

-43.636363636, 0.416666666, 0.384615384, 0.357142857, 0.333333333, 

0.312500000, 0.294117647. 0.277777777, 0.263157894, 0.250000000, 

0.238095238, 0.227272727, 0.217391304, 0.208333333, 0.200000000, 

0.192307692. 0.185185185, 0.178571428, 0.344827586, 0.666666666, 

-15.483870970, 0.156250000, 0.151515151, 0.147058823, 0.142857142, 

0.138888888, 0.135135135, 0.131578947, 0.128205128, 0.125000000, 

0.121951219, 0.119047619, 0.116279069, 0.113636363, 0.111111111, 

0.108695652, 0.106382978, 0.208333333, 0.408163265, 0.800000000) 

This function has the global minimum at y = 1.0911, with a value of -663.5. The 
improved version of the GOP algorithm takes 45 iterations to find the global 
solution from a starting point of y = 1. 

EXAMPLE 3. This example is taken from Wilkinson (1963). 

m;ln 0.000089248y - 0.0218343~~ + 0.998266~~ - 1.6995~~ + 0.2~~ 

O<ySlO. 

This problem has local minima at y = 6.325, f= -443.67, y = 0.4573, f= 
-0.02062, y = 0.01256, f= 0.0 and y =0.00246, f= 0 among others. The im- 
proved GOP algorithm identifies the global solution from different starting points 
within 25 iterations. 
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EXAMPLE 4. This example is taken from Dixon and Szego (1975), 

rn? 4~” - 4y3 + y4 

-5cys5. 

This problem has two global minima at y = 0, f = 0, and y = 2, f = 0. There is a 
local maximum at y = 1. When the original GOP algorithm was applied to this 
problem, the global solutions were identified after around 150 iterations. How- 
ever, the improved GOP algorithm identifies the global solution from different 
starting points within 50 iterations. 

EXAMPLE 5 (Three-hump camel-back function). This example is taken from 
Dixon and Szego (1975). 

min F(y) = 2y: - 1.05Y: + i YT - YlY2 + Yi 

-5cy,, y,s5. 

The nonconvexities in the problem are due to the -1.05~; and -y1y2 terms in the 
function. It can be seen that at the optimal solution, the value of y; must be either 
-5, 5 or yT/2. Assuming that the solution does not lie at -5 or 5, y2 can be 
replaced by ~~12. Then, the problem can be converted to the following uncon- 
strained optimization problem: 

min F(y) = 1.75yT - 1.05yt + i y; 

The modified GOP algorithm was applied to the problem in this form. The 
solution of y, = 0, F(y) = 0 was identified in 31 iterations for an absolute error of 
1O-5 between the upper and lower bounds on the global solution. 

EXAMPLE 6. This example is taken from Goldstein and Price (1971). 

min y6 - 15y4 + 27~’ + 250 

-5cyc5. 

This function has local minima at (0,250)) (3,7) and (-3,7). When the GOP 
algorithm was applied to the problem, the two global solutions were simulta- 
neously identified in 68 iterations for a relative tolerance of 10-3. 

EXAMPLE 7. This example is taken from Dixon (1990). 

min y4 - 3y3 - 1.5y2 + 1oy 

-5syc5. 
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This function has a global solution of -7.5 at y = -1. When the modified GOP 
algorithm was applied to the problem, the global solution was identified in 24 
iterations for a relative tolerance of 10m3. 

REMARKS. The number of iterations taken by the above problems for different 
orders of accuracy in the convergence of the upper and lower bounds is given in 
Table I. Some interesting points to note about the computational results of the 
modified algorithm are given below: 

(a) For all the problems for which the algorithm was applied, the number of 
iterations required for convergence increases almost linearly with the accuracy 
desired. For Example 1, the number of iterations required for an accuracy of 
10d3 is 11, while the number of iterations required for the bounds to be within 
lo-’ is only 26. This is in direct contrast to most algorithms that require an 
increasingly large number of iterations as the accuracy is increased. 

(b) For three of the problems considered (Examples 1, 2 and 3), the algorithm 
terminates exactly after a certain number of iterations. This is because after 
some iterations, the use of the improved bounds for the x variable results in 
tighter underestimating functions. Eventually, at some iteration, all the points 
in the stored sets are used up, and the Lagrange functions formulated for that 
iteration are such that no new points are generated that can improve the 
solution. Thus, for these problems, the algorithm converges to the global 
solution exactly. 

(c) For Examples 4 and 5, the convergence is in terms of the absolute difference 
between the upper and lower bounds. This is because the global solution of 
these problems is 0. 

(d) At every iteration of the algorithm, there is one function evaluation associ- 
ated with the solution of the primal problem, and two problems involving the 
solution of the simultaneous solution of two linear equations in two variables 
(which correspond to the solution of the two relaxed dual problems). 

Table I. Number of iterations of the modified GOP algorithm 

Problem Relative tolerance for convergence 

1K3 W5 10-' lo-* 

Example 1 11 15 19 23 
Example 2 34 39 45 45 
Example 3 13 18 28 33 
Example 4 30 40 54 56 
Example 5 27 31 34 36 
Example 6 68 161 - - 
Example 7 24 77 216 491 
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8.2. CONSTRAINED PROBLEMS 

EXAMPLE 8. This example is taken from Soland (1971). 

mm -12y, - 7y, + yz 

subject to -2y;‘+2-y,=o 

osy,s2 
osy,s3. 

The nonconvexity in this problem comes from the presence of the polynomial 
term -2~; in the first constraint. 

When the original GOP algorithm was applied to the problem in this form, 
from a starting point of 0 for y, , the algorithm converged to the global solution of 
-16.73889 at y = (0.7175, 1.47) in 89 iterations, solving 3 subproblems at every 
iteration. When the improved GOP algorithm was applied from the same starting 
point, the global solution was identified in 14 iterations. 

It should be noted that the constraint can be written in the following form: 

y,=2-2y;. 

Then, using this constraint to substitute for y, and utilizing the bounds on y,, the 
problem can be converted into the following unconstrained optimization problem: 

min 4~; + 6~; - 12y, - 10 

When the modified GOP algorithm was applied to the problem in this form, the 
algorithm converges exactly to the global solution in 14 iterations. It should also 
be noted that in this form, the problem is convex, and therefore any conventional 
solver should be able to identify the global solution. 

EXAMPLE 9. This is a test example that has a feasible region consisting of two 
disconnected sub-regions. 

m;ln -Y, - y2 
y7_~2+2y;-8y;+8y; 
y, =G 4y; - 32~: + 88~; - 96y, + 36 
osy,5Z3 
ocy,s4. 

The constraint region for this problem is given in Figure 2(a). As can be seen, 
there are two distinct regions where the problem is feasible. Because of this 
reason, if a conventional NLP solver were applied to this problem, it is highly 
unlikely that the solver would converge to the global solution at point C. 
Depending on the starting point, the solution will be one of the points A, B, or C. 
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Y2 

Fig. 2. Constraint region for Example 9. 

From a starting point of 0 for y,, the original GOP algorithm takes 210 
iterations to converge to the global solution of -5.50796 (occurring at y, = 
2.3295). When the improved GOP algorithm was applied to it, however, the 
algorithm took 24 iterations to converge to the global solution. 

Conclusions 

In this paper, the application of the GOP algorithm (Floudas and Visweswaran, 
1990) to problems involving polynomial functions in one variable is considered. 
The problem is solved by decomposition into a series of primal and relaxed dual 
problems. The solution of the primal problem can be obtained by simple function 
evaluations. The relaxed dual problem can be solved through two subproblems, 
each of which is shown to reduce to a problem of finding the intersection of two 
linear constraints in two variables. The simplified primal and relaxed dual 
problems result in a modified algorithm that is computationally very efficient. The 
application of the modified algorithm is shown through an illustrating example 
that details the improvement of the modified algorithm over the original GOP 
algorithm both numerically and geometrically. Several examples of unconstrained 
and constrained polynomial function problems are presented to highlight the 
efficiency of the new algorithm. 
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